首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1423篇
  免费   230篇
  国内免费   66篇
化学   1676篇
力学   2篇
综合类   5篇
数学   3篇
物理学   33篇
  2023年   13篇
  2022年   19篇
  2021年   45篇
  2020年   96篇
  2019年   47篇
  2018年   46篇
  2017年   33篇
  2016年   81篇
  2015年   64篇
  2014年   77篇
  2013年   92篇
  2012年   105篇
  2011年   80篇
  2010年   68篇
  2009年   88篇
  2008年   88篇
  2007年   93篇
  2006年   77篇
  2005年   92篇
  2004年   91篇
  2003年   52篇
  2002年   41篇
  2001年   27篇
  2000年   12篇
  1999年   13篇
  1998年   12篇
  1997年   17篇
  1996年   17篇
  1995年   20篇
  1994年   14篇
  1993年   11篇
  1992年   7篇
  1991年   10篇
  1990年   10篇
  1989年   8篇
  1988年   1篇
  1987年   8篇
  1986年   5篇
  1985年   9篇
  1984年   10篇
  1983年   3篇
  1982年   11篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有1719条查询结果,搜索用时 78 毫秒
951.
Dopamine (1) and tyrosinase (TR) activities were analyzed by using chemically modified ion-sensitive field-effect transistor (ISFET) devices. In one configuration, a phenylboronic acid functionalized ISFET was used to analyze 1 or TR. The formation of the boronate-1 complex on the surface of the gate altered the electrical potential associated with the gate, and thus enabled 1 to be analyzed with a detection limit of 7x10(-5) M. Similarly, the TR-induced formation of 1, and its association with the boronic acid ligand allowed a quantitative assay of TR to be performed. In another configuration, the surface of the ISFET gate was modified with tyramine or 1 to form functional surfaces for analyzing TR activities. The TR-induced oxidation of the tyramine- or 1-functionalized ISFETs resulted in the formation of the redox-active dopaquinone units. The control of the gate potential by the redox-active dopaquinone units allowed a quantitative assay of TR to be performed. The dopaquinone-functionalized ISFETs could be regenerated to give the 1-modified sensing devices by treatment with ascorbic acid.  相似文献   
952.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   
953.
CGP, a copolymer of aspartate and arginine, serves as a storage compound for nitrogen, carbon and energy in many cyanobacteria. Analysis of available genome sequences from prokaryotes identified ORFs putatively encoding proteins of high similarity to known cyanophycin synthetases and cyanophycinases from cyanobacteria in various strains of bacteria belonging to different phylogenetic taxa and not closely related to cyanobacteria. Genes of CGP metabolism occur in a wide range of bacteria exhibiting diverse metabolic capabilities, including aerobic and anaerobic respiration, fermentation, phototrophy and chemolithoautotrophy. This study identified different groups of cyanophycin synthetases and cyanophycinases, respectively, and proposes a collective terminology for the putative genes and enzymes of cyanophycin metabolism. Among 570 different microbial strains, whose genomes have been partially or completely sequenced and are publicly accessible, we identified 44 prokaryotes which possess a cyanophycin synthetase and are putatively able to synthesize CGP. From these, 31 prokaryotes harbor also a cyanophycinase enabling them to degrade CGP to dipeptides. From the latter, 24 strains possess in addition a dipeptidase necessary to hydrolyze beta-Asp-Arg dipeptides, thereby enabling them to completely utilize CGP. Therefore, CGP seems to have a much wider distribution among prokaryotes than previously recognized. Genes putatively encoding cyanophycin synthetase homologues were not identified in the genomes of Eukarya and Archaea and are therefore obviously only occurring in Eubacteria. In addition, the outcome of this detailed in silico analysis proposes to distinguish 10 different groups of cyanophycin synthetases.  相似文献   
954.
This paper presents the results of investigations of chemically modified fibers comprising an immobilized compound that yields ethene as the analyte in generated standard gaseous mixtures. Prior to chemical modification, the fibers were coated with a thin aluminum layer to improve their mechanical strength. Commercially available Al-coated fibers were used in this work. During thermal decomposition of the immobilized compound, reproducible quantities of the analyte per unit fiber length were obtained for all the investigated fibers (fiber diameter (μm)/outside diameter (μm) of the Al-coated fiber = 110/146, 220/300, and 660/830), amounting to 0.685 ± 0.032, 0.8300 ± 0.0081, and 1.092 ± 0.010 ng cm−1, respectively. The proposed procedure can be used successfully for the generation of measured component of matrix-free reference materials.  相似文献   
955.
956.
This work is aimed towards the generation of enzyme arrays on electrochemically active surfaces by taking advantage of the DNA-directed immobilization (DDI) technique. To this end, two different types of horseradish peroxidase (HRP)-DNA conjugates were prepared, either by covalent coupling with a bifunctional cross-linker or by the reconstitution of apo-HRP, that is, HRP lacking its prosthetic heme (protoporphyrin IX) group, with a covalently DNA-modified heme cofactor. Both conjugates were characterized in bulk and also subsequent to their immobilization on gold electrodes through specific DNA hybridization. Electrochemical measurements by using the phenolic mediator ortho-phenylendiamine indicated that, due to the high degree of conformational orientation, the apparent Michaelis-Menten constants of the reconstituted HRP conjugate were lower than those of the covalent conjugate. Due to the reversible nature of DDI, both conjugates could be readily removed from the electrode surface by simple washing and, subsequently, the electrodes could be reloaded with fresh enzymes, thereby restoring the initial amperometric-response activity. Moreover, the specific DNA hybridization allowed us to direct the two conjugates to distinct sites on a microelectrode array. Therefore, the self-assembly and regeneration capabilities of this approach should open the door to the generation of arrays of redox-enzyme devices for the screening of enzymes and their effectors.  相似文献   
957.
To modify gold electrode for immunosensor to construct an artificial cell membrane structure, water-soluble amphiphilic phospholipid polymer, poly[2-methacryloyloxyehtyl phosphorylcholine-co-n-butyl methacrylate-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (PMBN)] was applied. The polymer had active ester groups for immobilization of biomolecules and it was converted partially to thiol groups for binding to gold substrates. The partially thiolated PMBN was adsorbed on a gold electrode of quartz crystal microbalance (QCM). Surface characterization of adsorbed PMBN layers was thoroughly investigated with reflectance anisotropy spectroscopy, ellipsometry spectroscopy, dynamic contact angle and X-ray photoelectron spectroscopy measurements. Among several PMBN, having different degree of thiolation, it was concluded that 21.5% thiolated PMBN layer had the most well-ordered phosphorylcholine groups in its outer surface. The proteins adsorption test revealed that the phosphorylcholine group on the outer side of PMBN layers, which was substituted their active ester groups by glycine, showed suppress the non-specific adsorption of proteins, such as bovine serum albumin and γ-globulin. Also, through antigen–antibody binding evaluation, the anti-C-reactive protein antibody immobilized on the PMBN surface worked well and it was confirmed that denaturation of the antibody on the PMBN layers was hardly occurred in spite of 60 days storage at 4 °C. The antibody conjugated phospholipid polymer layer with well-ordered phosphorylcholine group could be outstanding functional membrane for biomedical diagnostic devices without non-specific binding and reduction of immunologic activity of immobilized antibody.  相似文献   
958.
A mutation analysis of the catalytic functions of active-site residues of coenzyme B(12)-dependent diol dehydratase in the conversion of 1,2-propanediol to 1,1-propanediol has been carried out by using QM/MM computations. Mutants His143Ala, Glu170Gln, Glu170Ala, and Glu170Ala/Glu221Ala were considered to estimate the impact of the mutations of His143 and Glu170. In the His143Ala mutant the activation energy for OH migration increased to 16.4 from 11.5 kcal mol(-1) in the wild-type enzyme. The highest activation energy, 19.6 kcal mol(-1), was measured for hydrogen back-abstraction in this reaction. The transition state for OH migration is not sufficiently stabilized by the hydrogen-bonding interaction formed between the spectator OH group and Gln170 in the Glu170Gln mutant, which demonstrates that a strong proton acceptor is required to promote OH migration. In the Glu170Ala mutant, a new strong hydrogen bond is formed between the spectator OH group and Glu221. A computed activation energy of 13.6 kcal mol(-1) for OH migration in the Glu170Ala mutant is only 2.1 kcal mol(-1) higher than the corresponding barrier in the wild-type enzyme. Despite the low activation barrier, the Glu170Ala mutant is inactive because the subsequent hydrogen back-abstraction is energetically demanding in this mutant. OH migration is not feasible in the Glu170Ala/Glu221Ala mutant because the activation barrier for OH migration is greatly increased by the loss of COO(-) groups near the spectator OH group. This result indicates that the effect of partial deprotonation of the spectator OH group is the most important factor in reducing the activation barrier for OH migration in the conversion of 1,2-propanediol to 1,1-propanediol catalyzed by diol dehydratase.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号